Telegram Group & Telegram Channel
Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение



tg-me.com/ds_interview_lib/205
Create:
Last Update:

Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/205

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA